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1. INTRODUCTION

Parallel algorithms have attracted considerable attention in recent years.

They have been developed for various numerical problems known to consume large

amounts of processing time on a serial computer. Because of their intrinsi-

cally parallel nature, certain classical numerical methods can be very effi-

ciently adapted to a multiprocessor environment. In particular, various

parallel algorithms have been developed for matrix multiplication ([Chan76])

and inversion ([Csan76], [Prep78b]), Fourier transforms ([Peas68], [Batc68])

and finite elements methods for partial differential equations ([Flan77],

[Rose69]). The parallel computer architectures for which these methods are

applicable include vector computers such as the Cray-1 ([Russ78]), as well

as interconnection networks and mesh-connected processors such as the Illiac

IV or the DAP ([Flan77]). In this paper, we present, however, a survey of

I parallel algorithms developed for sorting.

Sorting is defined as the process of rearranging a sequence of items

into ascending or descending order. A basic sorting operation deals with

items which are all key, that is the order is defined on the values of the

items themselves. A more general sorting procedure deals with records where

one field or the concatenation of several fields constitute the key with

which the records are to be sorted. In a database environment, sorting

I refers to record sorting and this has significant implications in terms of

storage and data movement, since typically a record will have several hundreds

j bytes, while the key or sort attribute may only be a few bytes long.

The purpose of sorting in a database environment is to facilitate access

to a record set. It is more efficient to access a particular record in a

sorted set than in an unsorted set and it is easier to identify duplicate re-

1 cords, since sorting brings them together. Sorting is also an efficient method

for realizing the equijoin of two relations in a relational database. For ex-

1 ample, if the tuples (i.e., records) of the relations (i.e., record sets) to be

5l joined are presorted, the join can be performed in a single sequential pass

over the relations.

Sorting appears to be a serial process by nature. However, the motiva-

tion for studying parallel sorting schemes is strong because of the high pro-

cessing costs involved. Also, the complexity of parallel sorting algorithms

is a real challenge to the theoretician and the introduction of parallel pro-

cessing adds a new perspective to a classical area of research.

IL
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While fast algorithms have been developed for sorting on a uniprocessor,

there is a fundamental difference in the approach taken for sorting an array and

for sorting a file. In the case of array sorting, one assumes that the entire

array is brought into a contiguous area of the processor's memory and that at

the end of the sorting operation the sorted sequence also resides in the pro-

cessor' s memory. For this reason, array sorting is usually called internal

sorting. The performance of an array sorting algori-thm is measured by its

execution time and its storage requirement. Depending on the size of the pro-

blem, a fast algorithm which requires a large amount of internal storage might

be less desirable then a slower algorithm with smaller storage requirements.

Execution time is determined by the number of comparisons and by the number of

moves (or interchanges) required. Also, an analysis of a serial sorting method

usually includes both the worst-case and the average-case execution time of the

algorithm, since the number of comparisons and moves needed may depend on the

initial distribution of the array elements. For example, it is known that the

"Quicksort" algorithm has the best average behavior among commonly used algo-

rithms while tree methods such as "Heapsort" perform better in the worst case.

A "straight" sorting method would compare every key to every other key and

therefore would require 0(n2) comparisons. However the theoretical lower bound

for the number of comparisons is nlogn (IIKnu731) and many sorting algorithms

indeed achieve it.

File sorting algorithms are termed external sorting algorithms which re-

quire different evaluation criteria. Since a large file cannot fit in the main

memory, an external sorting method must read some records of the file from the

secondary storage (such as disks or tapes), process them, and write them back

before some other records may be processed. Because every record must be com-

pared to every other record, sorting cannot be performed in a single pass over

the file and 1/0 costs become a significant factor in the design and evaluation

of an external sorting scheme. Merging of sorted lists of records is the basic

building block for external sorting. The simplest method is a 2-way merge and

sort which consists of iteratively merging pairs of lists of k records into a

sorted list of 2k records. Variations of this scheme include the n-way merge

and sort (where n lists are merged together at each step) and the N-way Balanced

Merge (where the output are written alternately on the different secondary de-

vices). In practice, one does not use a pure merge-sort algorithm. Typically,

the file is initially partitioned into equal sections small enough to fit in

the main memory and these sections are sorted using a fast internal sorting
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algorithm. When these sections have been sorted, the merge-sort procedure Is

initiated.

1 With one exception (Even's parallel tape sorting algorithm fEven741) all

previously published algorithms for parallel sorting are array sorting algorl-

thms. They may also be classified as internal sorting algorithms, since they

deal with the problem of sorting an array stored In the processors' memories

(in most cases the array is distributed so that a single array element re-

sides in each processor's local memory). Parallel processing makes it pos-

sible to perform more than a single comparison during each time unit. Some

models (the sorting networks in particular) assume that a key is compared to

only one other key during a time unit. This is restrictive but does not really

limit the amount of parallelism because, in general, there are less processors

available than pairs to compare. Another possibility is to compare a key to

many other keys simultaneously. For example, in [Mull75], a key is compared

to (n-l) other keys in a single time unit using n processors.

Parallelism may also be exploited to move many keys simultaneously. After

a parallel comparison, the processors may exchange data. The concurrency which

can be achieved in the data exchange is limited either by the interconnection

j scheme between the processors, if one exists, or by memory conflicts, if the

shared memory is used for communication.

The analog to a comparison-and-move step in a uniprocessor memory is

a parallel-comparison-and-concurrent-exchange step in a parallel organization.

Therefore, It is natural to measure the performance of parallel sorting algori-

thms by the number of parallel comparison and concurrent exchanges required.

Thus, the speedup of a sorting algorithm due to parallelization may be defined

I as the ratio between the number of comparison-moves required by an optimal

serial sorting algorithm and the number of comparison-exchanges required by the

parallel algorithm. Since an optimal serial algorithm sorts n keys in O(nlogn)

time, an optimal speedup via parallelization would occur when n keys are sorted

with n processors in time O(logn). However, it does not seem possible to

achieve this bound by simply parallelizing one of the well-known optimal sorting1 algorithms, since it appears that the best serial sorting algorithms have severe

serial constraints which cannot be removed. On the other hand, parallelization

of straight sorting methods (i.e., brute-force methods requiring 0(n2) compari-

sons) seems easier but it cannot lead to very fast parallel algorithms. By

performing n comparisons instead of one in a single time unit, the execution

Itime can be reduced from O(n2) to O(n). Partial parallelization of a fast serial

, j
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algorithm can also lead to a parallel algorithm of order O(n). For example,

if we assign a processor to each of the (2n-l) nodes of a selection tree, we

can transfer the minimum key to the root processor in logn steps and in (n-l)

additional sequential steps we can also transfer, in order, all the remaining

keys to the root.

The speedup achieved with these simple parallelization schemes (logn for

n processors) was not satisfactory and many efforts have been made to improve

it. The first major improvement was reached by the sorting networks with a

speedup of n/logn. Recently, Preparata has shown [Prep78a] that the optimal

bound (time: O(logn), speedup: n) can be achieved by using a theoretical

model of n processors accessing a large shared memory. Furthermore, Baudet

has shown [Baud78] how the optimal speedup equal to the number of processors

may be asymptotically achieved by using a single-instruction-stream-and-

multiple-data-stream (STMD) computer in which the number of elements to be

sorted far exceeds the number of processors used to do the sorting. These

and other internal sorting algorithms are described in Section 2.

A characteristic of many of the internal sorting algorithms [Nass79,

Thom77, Ston~l] is that they use p processors to sort p (or 2p) elements.

Therefore, even though these methods are fast, they suffer from the fact that

groups of elements larger than p (or 2p) in number will have to be sorted in

separate batches of p (or 2p) elements and then be merged. Thus, these me-

thods are processor-limited, i.e., the number of elements that can be sorted

is limited by the number of processors. Similarly, we conclude that the me-

thods of [Prep78a, Hirs78] are also processor-limited. The methods presented

in [Baud78], however, are not processor-limited. Thus, in these methods, p

processors are used to sort Mp elements, where each processor has enough pri-

mary memory to store M elements.

Internal sorting algorithms, however, do not address the problems of

sorting a large data file in a database environment in which the number of

records to be sorted is significantly larger than the available memory of the

multiprocessor. In Section 3, we present a description of several external

sorting algorithms which have been developed to overcome the problems. In-

cluded are Even's parallel tape sorting algorithms along with several external

algorithms which have been developed by the authors. Finally, a summary and

suggestions for future research are presented in Section 4.

,-.- .
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2. INTERNAL SORTING ALGORITHMS

Research on parallel algorithms for internal sorting can be divided Into

three broad categories. The earliest algorithms use sorting networks. A svt

of n numbers entering a sorting network on n separate input lines is sorted

by performing a sequence of parallel comparisons and concurrent exchanges on

pairs of numbers. The best sorting networks achieve a speed of O(log 2n). Tlat

is, they can sort n numbers in approximately log 2n comparisons and exchanges.

I A second category of algorithms assumes a model where the processors have more

complexity than comparators modules and they share a large common memory. The

type of sorting algorithm used for this model is very different from the sort-

ing networks. Most of them are "enumeration" algorithms which associate with

each element in the array being sorted a count specifying the element position

in the sorted array. Optimal algorithms in this category are very fast and

achieve the optimal lower bound of O(logn). A third category of algorithms

assumes that each processor has enough local memory to store M keys. Thus,

a total of Mp keys may be sorted by p processors. These algorithms are not

I processor-limited and are optimal when M>>p.

In the following sections, we describe these three models and also discuss

parallel sorting on a mesh-connected multiprocessor [Thom74, Nass79].

1 2.1 Sorting Networks

One of the earliest results in parallel sorting is due to Batcher, who

I developed two methods to sort n keys with O(nlog 2n) comparators in time O(log 2n).

A comparator is a module which receives two keys on its two input lines A, B

and outputs the lower key on its higher output line L and the higher key on its

lower output line H (see Figure 1). A serial comparator receives A and B with

their most significant bits first and can be realized with a small number (Ay,

I 13) of NOR gates put on an integrated circuit chip. Parallel comps~ators where

several bits are compared in parallel at each step are faster but obviously

I more complex. Batcher's algorithms, odd-even merges and bitonic ,sortsare all

based on the principle of iterated merging. Starting with an initial sequence
3 of 2k keys, a specific iterative rule is used to create sorted lists of 2, 4,

8, ... ,2k keys during successive stages of the algorithm.

2.1.1 Odd-Even Merges

The iteractive rule for an odd-even merge is illustrated in Figure 2.

5 Given two sorted sequences of keys (a,, a2,...) and (bl, b2 ,...), two new s--

I
.--- -
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a keyLower key
a key A L MIN(A,B)

aohrkey Higher key

anter - B H MAX (A, B)

Figure 1. A Comparison-Exchange Module
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Figure 2. The Iterative Rule for the Odd-Even Sort
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quences ("odd" and "even" sequences) are created: one consists of the odd-

numbered keys and the other of the even-numbered keys from both sequences.

The odd sequence (Cl, c2 ,...) is obtained by merging the odd terms (al, a3 ...)

with the odd terms (bI , b3,...). Similarly, the even sequence (dl, d2,...)

is obtained by merging the even terms (a2, a4 ,...) with the even terms

(b2, b4,...). Finally the sequences (cl, c2 ...) and (dI, d2,...) are merged

into (e., e ,...) by applying the following comparison-exchanges:

e = CI

e2i max(ci+i,d
i)

e 2i+l =min(c i+ldi)

The resulting sequence will be sorted. (For a proof the reader is referred

to [Knut73], pg. 224,225.)

To sort 2k keys using the odd-even iterative merge requires 2
k -l 2-by-2

merging networks, followed by 2k-3 4-by-4 merging networks, and so on. Since

2i+l -by- 21+1 merging network requires one more step of comparison-exchanges

than a 2i-by-2i merging network, it follows that an input key goes through at

most k(k+l)/2 comparators (since 1+2+ ... +k=k(k+l)/2). This means that 2 keys

are sorted by performing k(k+l)/2 parallel comparisons and exchanges. However, the

number of comparators required by this type of sorting network is ((k -k+4)2 k-21)

[Batc68]. Several subsequent works ([Knut73]) have been able to reduce this

number of comparators, but only in some particular cases (e.g., k54).

2.1.2 Bitonic Sorts

A bitonic sequence is obtained by juxtaposing two monotonic sequences

into one when one montonic sequence is ascending and the other descending I .

For example, the following bitonic sequence consists of an ascending monotonic

sequence of (3589) and a decending monotonic sequence of (6421).

3 5 8 9 6 4 2 1

For a bitonic sort, a second iterative rule is used (see Figure 3). The

iterative rule is based on the observation that a bitonic sequence may be split

into two bitonic subsequences by performing a single step of comparison-exchanges.

Let (al, a2,...,a2n) be a bitonic sequence such that a,<a 2,..., <an and

1A more general definition of a bitonic sequence allows a cyclic shift of
such a sequence, e.g., 89642135 would also be a bitonic sequence.



I 9

Ia

L n-1Plement

bit oni c

sequence

sorter

a 1-
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n-Element*I bitonic

L sequenceI sorter*

Figure 3. The Iterative Rule for the Ritonic Sort
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a+l _a a 2 . Then the subsequences

min(al,an+I), min(a2,an+ 2),-.., min(an,a2n)

and
max(al,an+1 ), max(a2 ,an+2),..., max(an,a2n)

are both bitonic. Furthermore, the first subsequence contains the n lowest

keys of the original sequence while the second contains the n highest. It

follows that a bitonic sequence can be sorted by sorting separately two bi-

tonic subsequences which are one half as long.

To sort 2k keys using the bitonic iterative rule, we can successively

sort and merge smaller sequences into larger sequences until a bitonic se-

quence of size 2k is obtained. This sequence can be split into "lower" and

"higher" bitonic subsequences. Note that the recursive-building procedure

of a bitonic sequence must use some comparators which invert their output

lines in order to output a pair of keys in decreasing order. This is neces-

sary in order to build the decreasing subsequence of a bitonic sequence

(see Figure 4). A bitonic sort of 2 k keys requires k(k+l)/2 steps, each

using 2k-1 comparators.

Since the first version of the bitonic sort was presented, the algorithm

has been considerably improved by the introduction of the "perfect shuffle"

interconnection [Ston7l]. Stone noticed that if the inputs were labeled by a

binary index, then the indices of every pair of keys that enter a comparator

would differ by a single bit in their binary representations, and this bit

would be the j-th bit on step i, where j = [(i-l)modk+l], of the bitonic sort.

On the other hand, "shuffling" the indices (in a manner similar to shuffling

a deck of cards) is equivalent to circularly shifting their binary represen-

tation to the left. Shuffling twice would shift the binary representation

of each index twice. Thus the bitonic sort can be executed using a single

rank of 2k
-1 processors which are connected with a set of shift registers and

shuffle links as shown in Figure 5.

Stone's modified version of the bitonic sort can sort n keys with n/2
2processors in log n shuffle steps and l/2(logn)(logn+1) comparisons-exchanges.

This provides a speedup of O(n/logn) over the O(nlogn) complexity of serial

sorting. Therefore, it improves significantly the previous known bound of

O(n) for parallel speedup with n processors. The algorithm is illustrated in

Figure 6.

Sorting networks are characterized by their "non-adaptivity" property.

They perform the same sequence of comparisons regardless of the result of
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Figure 4. A Bitonic Sort for 8 Keys
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intermediate comparisons. In other words, whenever two keys R and R. are
J

compared, the subsequent comparisons of Ri in the case R i< R are the same as

the comparisons that R would have entered in the case Rjf R . The non-adapti-
vity property makes the implementation of an algorithm very convenient for an

SIMD machine: the sequence of comparisons and transfers to be executed by all

the processors is determined when the sorting operation is initialized. For

example, it is shown [Sieg77] that the bitonic sort can be implemented on STMD

machines that have interconnection schemes different from the perfect shuffle.

2.2 Bitonic Sorts on Mesh-Connected Processors

A different sorting problem is considered in [Thom75], in which the pro-

cessors of an n-by-n mesh-connected multiprocessor are indexed according to

a prespecified rule. The indexing rules considered are the row-major, the

snake-like row-major and the shuffled row-major rules (shown in Figure 7).

Assuming that n2 keys with arbitrary values are initially distributed so that

exactly one key resides in each processor, the sorting problem consists of
2

moving the i-th smallest key to the processor indexed by i, for i=l,...,n 2

As with the sorting networks, parallelism is used to simultaneously compare

pairs of keys, and a key is compared to only one other key at any given unit

of time. Concurrent data movement is allowed but only in the same direction,

that is all processors can simultaneously transfer the contents of their trans-

fer registers to their neighbors to the right, left, above or below. This

computation model is SIMD since at each time unit a single instruction (compare

or move) can be broadcast for concurrent execution by the set of processors

specified in the instruction. The complexity of a method which solves the

sorting problem using this model can be measured in terms of the number of

comparisons and unit-distance routing steps. For the rest of this section we

refer to the unit-distance routing step as a move. Any algorithm which is able

to perform such a permutation will require at least 4(n-l) moves, since it may

have to interchange the elements from two opposite corners of the array pro-

cessor. This is true for any indexing scheme. In this sense a sorting algori-

thm which requires O(n) moves is optimal.

In [Thom75] two algorithms were presented which sort in O(n) comparisons

and moves. The first algorithm usc; an odd-even merge of two dimensional

arrays and orders the keys with snake-like row-major indexing. The second

uses a bitonic sort and orders the keys with shuffled row-major indexing.

Recently, a third algorithm that sorts with row-major indexing with similar
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performance has been published [Nass79]. This algorithm is also an adaptation

of the bitonic sort where the iterative rule is a merge of two dimensional

arrays.

2.3 The Odd-Even Transposition Sort

The serial odd-even transposition sort [Knut73] works as follows. Let

(xl, x2 ,..., xn) be a set of keys to be sorted. There are n steps of compari-

son-exchanges: during the odd steps,xl, x 3,.., are respectively compared to

x2, x4 ,.., and exchanged,if x1 > x2, x3 >x 4 ,. ..  At the even stepsx i and

xi+ 1 (i=2, 4, 6,...) are compared and exchangedif xi >x i+ .

This algorithm calls for a straightforward parallelization [Baud78].

Consider n linearly connected processors and label them P., P2 9...' Pn. We

assume the links are b4.directional so that Pi can communicate with P 1i- and
with P i+l Initially x i resides in Pi for i=l, 2,..., n. For a parallel

sort, let odd numbered processors such as P and P3 be active during the odd

steps and perform in parallel the odd steps of the serial odd-even transposi-

tion sort. Similarly let even numbered processors such as P2 and P4 be active

during the even steps and perform in parallel the comparison-exchanges (xl, x i+l)

for even i's. Note that a single comparison-exchange requires two transfers.

For example, during the first step, x2 is transferred to P and compared to xI by

PI" Then, if x2 < X1 , xI is transferred to P2 : otherwise, x 2 is transferred back

to P2" Therefore, the algorithm sorts n keys with n processors in n compari-

sons and 2n moves. This is not as fast as other algorithms we have previously

described, but [Baud78] describes a generalization for the case where there

are p processors and n=Mp keys to sort and he shows that the modified algorithm

is optimal if n>> p.

The idea is to distribute the sequence to be sorted equally among the

p processors so that M keys are stored in each processor's local memory. At

the end of the sorting procedure, processor P. should have in its local memory1

a sorted sequence Si of M keys. Moreover, the concatenation of these partial

sequences S S2...S should be a sorted sequence of length n. This is a natural

extension of the definition of a sorted array stored in a single processor

memory in the sense that one could consider the total address space of the

linearly connected multiprocessor as the ordered concatenation of the pro-

cessors local memories so that the first processor contains the first M ad-

dresses and the p-th processor contains the last M addresses. With M keys

stored in each processor, the odd-even transposition sort may be generalized

as follows. Initially each processor sorts internally its M keys, using a fast
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serial algorithm. Then the algorithm proceeds as before provided that a com-

parison exchange step is replaced by a "merge-split" step, which consists of

merging 2 sorted sequences each of which has M keys splitting the resulting

sequence of 2M keys into two and transferring the higher half to the right

neighbor processor. Merging two sequences requires 2M comparisons and 2M

transfers are required for each merge-split step. Therefore, after the

initial internal sort the algorithm requires 2Mp (i.e., 2n) comparisons and

moves. The initial phase requires Mlog (i.e., (n/p) log (n/p)) comparisons

and this term will determine the O(nlogn/p) complexity of the algorithm in

the case that p<< logn.

2.4 Sorting on a Shared-Memory Multiprocessor

After the bound of O(log 2n) was achieved throug. the use of sorting net-

works, considerable effort was devoted to improve this result and to achieve

the theoretical bound of O(logn).

2.4.1 Sorting Network Methods

The first model that was able to reach this bound may be designated as

a "modified" sorting network [Mull75]. Instead of comparison-exchange modules,

this model uses comparators which input two keys A, B and output a single bit

x(x= O if A< B or x=1 if A>B). To sort a sequence of n keys, each key is

simultaneously compared to all the others by using a total of n(n-l) compara-

tors. The output bits from the comparators are then fed into a parallel counter

which computes in logn steps the rank of a key by counting the number of bits

set to 1 in the comparison of this key with all the other (n-l) keys. Finally,

a switching network consisting of a binary tree of (logn+l) levels of single-

pole, double-throw switches routes a key of rank equal to i to the i-th ter-

minal of the tree. There is one such tree for each key, and each r .e uses

(2n-l) switches. Routing a key through this tree requires logn time units,

and this step determines the algorithm complexity. A diagram for this type

of sorting network is presented in Figure 8.

At the cost of additional hardware complexity (the basic modules are more

complex than comparison-exchange modules and the network uses more of them),

the above algorithm sorts n keys in O(long) time with O(n 2) processing ele-

ments. This result was the first to use an enumeration scheme for parallel

sorting. Later algorithms which we refer to as "enumeration type" sorting

algorithms exploit the same idea.

I
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Figure 8. Sorting Network not Constructed of
Comparison-Exchange Modules



The sorting network model and its modified version were embedded In a

more general multiprocessor model where n processors have access to a large

shared memory. With this scheme, sorting is performed by computing in

parallel the rank of each key (the "enumeration" phase) and routing the keys

to the location specified by their rank. The algorithm we have just described

performs the enumeration with n(n-l) comparators and the routing with n trees

of (2n-1) switches each. Therefore, it can also be described as an enumeration-

type algorithm which sorts n keys in time O(logn) on a multiprocessor which

consists of O(n 2 ) processors sharing a common memory of O(n2 ) cells.

A major improvement of this algorithm calls for a reduction in the number

of processors. Even from a pure theoretical point of view, the requirement of

n2 processors for achieving a speed of O(logn) is discouraging. An optimal

parallel sorting algorithm should achieve the same speed with only O(n) pro-

cessors in order to show a speedup of order n.

2.4.2 Faster Parallel Merge Methods

In a study [Vali75] of parallelism in comparison problems, an algorithm

with a shared memory model that merges two sorted sequences of n keys and m

keys (where n m) with nm processors in 2loglogn+O(1) comparison steps (com-

pared to logn for the bitonic merge) has been proposed. On the other hand,

the problem of merging two sorted sequences of n keys and m keys with a smaller

number of processors p (p n-Sm) has been studied. By employing a simple

parallel binary insertion, an algorithm [Gavr75] solves this problem with

(2log(n+l)+4n/p) comparisons when two sorted sequences have the same number

of keys. These two fast merge procedures were the basis for subsequent parallel

sorting slgorithms ([Hirs78], [Prep78a]) of optimal complexity O(logn).

2.5 Bucket Sorts

A bucket sort algorithm [Hirs78] which sorts n keys with n processors in

time O(logn), provided that the key values are in the range {0, 1,.. ,m-l}

where m is termed the bucket number. A side effect of this algorithm is that

duplicate keys are eliminated. It would be sufficient to have m buckets and

to assign one key to each processor (the processor that gets the i-th key

would be labeled Pi); Pi would then place the value i in the appropriate

bucket. For example, if P3 had the 3rd key which is 5, it would place the

value 3 in bucket 5. In other words, key values become bucket addresses.

However, with this simplistic solution a bucket memory conflict may result
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when several processors attempt simultaneously to store different values of 1
"n the same bucket. The memory contention problem may be solved by increasing

substantially the memory requirements. Suppose there is enough memory avail-

able to create n arrays for each bucket. Each processor (there are n of them)

can then mark a bucket without any fear of memory conflict. To complete the

enumeration sort the n arrays of a bucket must be merged. This is done by

using a sophisticated parallel merge procedure, where processors are granted

simultaneous read access to a memory location but no write conflict can occur.

Hierschberg generalizes the above method so that duplicate keys remain in the

sorted array. But this degrades the performance of the sorting algorithm. The
1+k(l/k)result is a method which sorts n keys with n processors in time O(klogn),

where k is an arbitrary integer [Hirs78].

A major drawback of this algorithm (aside from the lack of realism of the

shared memory model which will he discussed later) is its m*n space requirement.

Even when the range of possible key values is not very large, one would like to

reduce this requirement. In the case of a wide range of key values (for example

if the keys are character strings rather than integer numbers), the algorithm

would not be applicable.

2.6 Sorting By Enumeration

In [Prep78a] two new fast sorting algorithms are presented, which are both

enumeration-type algorithms. However, rather than computing separately the

rank of every single key, they first partition the keys into a number of key

lists, sort the key lists and compute their ranks by merging pairs of key lists.

Finally, for each key the sum of its key list ranks is also computed in parallel.

The first algorithm uses Valiant's merging procedure [Vali75] and sorts n

keys ith nlogn processors in time O(logn). The second algorithm uses Batcher's

odd-even merge and sorts n numbers with n14(1/k) processors in time 0(klogn).

The latter algorithm performs like Hierschberg's but it has the additional ad-

vantage of being free from memory contention. Recall that Hirschberg's model

required simultaneous fetches from the shared memory, while Preparata's method

does not, since each key participates in only one comparison at any given unit

of time.

Despite efforts made by these authors to eliminate memory conflicts in both

bucket sorts and enumeration sorts, they are still not very realistic. Any

model requiring at least as many processors as the number of keys to be sorted,

all sharing a very large common memory, is not feasible with present or near-

NOUN-,
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term technology. However, the results achieved are of major theoretical im-

portance and the methods used demonstrate the intrinsic parallel nature of

certain sorting procedures. Furthermore, it seems that many of the basic ideas

in these algorithms can inspire the design and the implementation of realistic

SIparallel sorting methods for multiproce.ssors. For example, in Section 3.2.3

we present a simple method for parallel sorting by enumeration, which we plan

to implement on a backend multiprocessor. While the efficiency of this method

3 relies on the assumption that a fast broadcast 7acility is available, no shared

memory is required.

3. EXTERNAL SORTING ALGORITHMS

In this section we present several parallel algorithms for sorting files.

These algorithms differ from key sorting algorithms presented in Section 2 in

several respects. First, they are designed to sort files for which the entire

records of the files must reside in the prime memory. An internal sort algo-

rithm only requires the keys of the records to be present in the prime memory.

j The memory and input line requirements of external sorting algorithms far ex-

ceed the memory and input line requirement of the internal sorting algorithms.

A second difference between these two classes of parallel algorithms is the

criteria by which different algorithms are evaluated. For internal sorting

algorithms, the primary evaluation criteria are the number of comparisons and

moves required to put the key in the sorted order. For external sorting algo-

rithms, while the number of comparisons and moves required arF ,.ortao , the

principal criterion is the number of input/output operation tcuired. Th-us,

none of the algorithms presented below can be considered as optimal if our

principal criterion Is in terms of the number of key comparisons required.

We begin with three external merge-sorting algorithms including Even's

parallel tape sorting algorithm lEven76]. Then, in the following section, we

describe two different classes of block sorting algorithms. These algorithms

are generalizations of non-adaptive sorting algorithms which use only compari-

son-exchanges and are obtained by replacing all comparison-exchange steps by

merge-split steps. Two different techniques for merge-splitting are available,

and these lead to the two different classes of block sorting algorithms.

3.1 Terminology and Notation

To facilitate our discussion, we introduce some terminology. We make the

simplifying assumption that records are of fixed-length. Furthermore, let us
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suppose that one page of memory can hold exactly one record. These two assump-

tions simplify the graphical illustration ol the algorithm but are not essential

to their understanding or operation. Each record is composed of a number of

attribute-value paris. Whenever a record set is to be sorted, it is meant that

the records of the set are ordered on the basis of increasing (or decreasing)

values of a certain attribute (i.e., key) of the set. Thus, to sort a record

set, an attribute (key) of the set must be designated first as the sort attri-

bute. The sort values are those attribute values of the sort attribute. The

number of sort values (not all of them being distinct) is equal to the cardina-

lity of the record set. For example, in Figure 9, we illustrate a set of three

records each of which consists of attribute-values on rank, age, salary, etc.

We may sort these records on a number of attributes. If the chosen sort attri-

bute is Rank, then we may represent the records with their rank values, namely,

5 for Record 1, 3 for Record 2 and 9 for Record 3. We do not have to show

other attribute values of the records in representation, because these other

attribute values are not in consideration. (See Figure 9 again). Upon sorting,

Record 1 should precede Record 3 and follow Record 2, since this is the sequence

of the sort values. On the other hand, if we choose either Age or Salary as

the sort attribute, the sequence of sorted records will be different. More

specifically, Record 1 will be last and Record 3 will be first in the sequence.

This sequence of records is dictated by either ages or salaries. (see Figure 9

once more). This example shows that we represent records with their sort values.

For simplicity, we eliminate the other attribute values. In the following

sections, we shall use positive integers to represent the sort values of the

records. A large rectangle represents a sorted run of records in one or more

pages. Each page is represented by a small rectangle. The integer within the

page denotes a record. Furthermore, we shall use circles to denote the pro-

cessors. In Figure 10 for example, there are four processors and 16 pages.

To aid in the analyses of these algorithms, we let

n: the number of records to be sorted
p: the number of processors

Cr: the time to read a page (from the secondary memory
or cache)

Cw: the time to write a page (into the secondary memory
or cache)

Cm: the time to merge two pages into a sorted run of two
pages

C1 : Cr +Cm +Cw C2 : 2 Cr +Cm +2CwC3 r+Cm+w

M: n/p
Cs: time to send a page fromn one processor to another
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Same Records Represented by Different

Actual RecordsSotVle
with Record V~s

atthed peat Sort Values on Sort Values on Sort Values on

corners Rank Age Salary

1 Rank 5

Age 60

Salary 30, 000 5 60 30,000

Job Professor

2 Rank 3

Age 35

Salary 21,000 3 35 21,000
JTob Analyst

3 Rank 9

IAge 28

Salary 18,500 9 28 18,500IJob Clerk

IY
I Prior to any sorting

I Figure 9. Representing Records by Sort Values

amIid
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16 13

1 10 9
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P2 P3

16
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].2 10
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IPOST-OPTIMAL

7 5 STAGE

4 2

3 P1 1
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Figure 10. Parallel Binary Merge with
4 Processors and 16 Pages
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3.2 External Merge-Sorting Algorithms

In this section we describe three parallel algorithms which are based on

the traditional serial approach for externally sorting a file, i.e., the ex-

ternal merge-sort.

I 3.2.1 Even's Tape Sorting Algorithm

In [Even74], two parallel tape sorting algorithms are presented which are

I considered to be the first contribution to parallel external sorting algorithms.

The sorting problem addressed in [Even741 is to sort a file of n records with p

processors, where p<< n. The only internal memory requirement is that three

records could fit simultaneously in one processor's local memory. Both algo-

rithms are parallel versions of an external 2-way merge-sort. They sort a

file of n records by merging iteratively pairs of sorted runs of size 2, 22,...

2 n  . In the first method, each processor is assigned n/p records and 4

tapes to perform an external merge sort on this subset of n/p records. After

p sorted runs have been produced by this parallel phase, a single processor

j merge-sorts them serially.

In the second method, the basic idea is that each processor performs a

different phase of the serial-merge procedure. The i-th processor merges pairs
of runs of size 21-1 into runs of size 2 for i=I, 2,...Ilogni. (Ideally, n

is a power of 2 and logn processors are available.) A high degree of parallel-

ism is achieved by using the output tapes of a processor as input tapes for the

next processor so that as soon as a processor has completed 2 runs these runs

can be read and merged by another processor.

3.2.2 Parallel Binary Merge Sort

In this section we describe a merge-sort algorithm which utilizes both

parallelism during each phase and pipelining between the phases to enhance per-

formance. This parallel algorithm is an adaptation of the Even's tape sorting

algorithm. It assumes a multiprocessor system with a three-level memory hierar-

chy. Each processor is assumed to have enough local internal memory to hold

three pages of the file being sorted. Two of the buffers are used to hold in-

put pages and the remaining one is used to hold output page. Between the pro-

cessors and the mass storage device holding the file to be sorted (i.e., a disk

drive) is a shared memory which acts as a disk cache. Processors are assumed

to have access to this shared memory through an interconnection device such as

a banyan [Goke73] or a cross-point switch [Wulf72J. The algorithm does not

l
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assume that the disk cache is large enough to hold the entire file to be sorted.

Rather this disk cache is simply useful for improving performance of the algo-

rithm. By using such an organization we show that the delay between processors

can be shortened (no rewinding of the tapes is required) and that the 4p mag-

netic tapes requirement can be eliminated. In [Bora8Oa], a binary merge sort

without pipelining of the phases was analyzed. The parallel binary sort algo-

rithm presented below represents a significant improvement.

Execution of this algorithm is divided into three stages as shown in

Figure 10. We assume that there are at least twice as many pages in the file

being sorted as there are processors. The algorithm begins execution in a

suboptimal stage in which sorting is done by successively merging pairs of

longer and longer runs until the number of runs is equal to twice the number

of processors. First, each of the p processors reads 2 pages and merges them

into a sorted run of 2 pages. This step is repeated until all single pages

have been read. If the number of runs of 2 pages is greater than 2*p, each of

the p processors proceeds to the second phase of the suboptimal stage in which

it repeatedly merges 2 runs of 2 pages into sorted runs of 4 pages until all

runs of 2 pages have been processed. This process continues with longer and

longer runs until the number of runs equals 2*p.

When the number of runs equals 2*p each processor will merge exactly two

runs of length n/2p. This phase is called the optimal stage. At the beginning

of the postoptimal stage the controller releases one processor and logically

arranges the remainder as a binary tree (see Figure 10). During the postop-

timal stage parallelism is employed in two ways. First, all processors at

the same level of the tree execute concurrently. Second, pipelining is used

between levels in a manner similar to the pipelined merge sort (described in

the previous section) except that each processor outputs a single run rather

than two. By pipelining data between levels of the tree, a parent is able to

start its execution a single time unit after both its children (i.e., as soon

as its children have produced one page). Therefore, the cost of the postoptimal

stage will be a 2-page operation for each level of the tree plus the cost for

the root processor to merge two runs of length n/2.

Analysis: If p=n/2, there is no suboptimal stage and the processor at the top

of the binary tree waits log(n/2) units of time before it starts merging 2 runs

of size n/2. During each unit of time, a processor will read two pages, merge

them together and write out one page. Therefore, the algorithm terminates in

log(n/2)C3 +nC time.
p p

1_ _ _
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If p< n/2, then during each of the log(n/2p) phases of the suboptimal

stage each processor executes a total of n/p page operations (I.e., n/2p C
P

operations). Tn phase I the runs are one half the size or the runs of phaset

1+1, but each of the p processors performs twice as many merge operations In

order to exhaust the runs. Thereafter, the top processor waits logp units of

time before it starts merging two runs of length n/2. Therefore, the total

execution time of the algorithm is

(n/p) * log(n/2p)C + logpC
3 + nC1

P P p

suboptimal phase waiting merging

3.2.3 The Pipelined Selection Sort

Unlike the two previous algorithms, this algorithm does not produce

longer runs during intermediate steps of its execution. Therefore, it does

not require that the processors merge blocks longer than a single page. How-

ever, it is not as fast since its complexity is O(n 2/p) compared to O(nlogn/p).

Neverthelbss, we feel that it has other properties (in particular its simpli-

city) which make it worthwhile considering.

Basically, the algorithm is based on iterative selection. The maximum

of n pages is determined, then the maximum of the remaining n-1 pages is deter-

mined and the operation is repeated until the last (i.e., the minimum) page

is created. By "maximum" page we mean that page with the highest key values.

To determine it, 2 pages are merged and the first page of the sorted run is

kept. This page'is then merged with a third page, and again the first page of

the result run is kept. By repeating this process until all the source pages

are exhausted, the maximum page is obtained.

Parallelism is introduced by having one processor assigned to each step

of maximum selection. In other words, the first processor selects the maximal

page among n pages, the'second processor selects the maximal page among the

remaining n-l pages, etc. If enough processors are available, the algorithm

performs optimally when p=n-i processors are assigned to the sort operation.

j In this case, the processors are labeled PI' P2 "' P n-1 and logically organized1

as a pipeline. P1 reads sequentially the source relation pages. During each C timep

unit, it reads a new page, merges it with the page that was previously kept in

its buffer and sends the lower page to P2. After P2 has received 2 pages, it

starts processing in the same way and sends its lower page to P3. As the pipe-

line is filled, the pages flow one at a time through the processors. When the1
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last page reaches Pn-l' Pis for i=l, 2,..., n-2, contain the i-th page of the

sorted relation. To complete the sort operation, Pn-1 merges the 2 pages it

has received and writes them out, in order, as the 2 last pages of the sorted

relation. The time to sort in this case is

T =  time for P to read n pages, merge n-i pairs of pages
and write n-l pages,

+ time for the last page to propagate through the pipeline.

C r (* for P to read the first page

+ (n-i) C
1

p

+ (n-1) C1

p
+ C (* for P 1 to write the last page *)

T= (2n-2)C 1 + C + C
p r w

which is approximately equal to (2n-l)C I .

p
Note that we have omitted the time for the first n-2 processors to write

their result page. This is because Pi can write its result page while Pi+l

reads the page PI has previously written.

in the general case, when p<n-1, the algorithm requires multiple phases.

Each phase repeats the basic linear pipeline algorithm, except that processor

P must write out excess pages that no other processor can receive. DuringP
the first phase, this creates a bucket of n-p pages which is not sorted. On

the other hand, the p pages residing in PI. P P constitute the first

p pages of the sorted relation. For n=kp, the algorithm will require k phases

with each phase producing p pages of the sorted relation. if n is not an

exact multiple of p, then the only modification is for the last phase: if less

than p pages are left then the last phase uses a shorter pipeline of length
1n mod p, and terminates in 2(n mod p)-2 C page operations. The execution time
p

of the algorithm Is the sum of the execution times of the k phases, where the

*i-th phase takes:
1

n - (i-l)p - 1 + (p) C time unitsp
This sum is equal to

p * k(k+l)/2 - k + k * (p)

or in terms of n and p
2n /2p + 3n/2 - n/p

For large n, and p less in order of magnitude than n this is of order n 2/2pC
I .

p
This algorithm has several advantages. in particular, it appears simple

to implement and it seems that it would imply no storage overhead. Unlike the

previous sorting algorithms, it does not require that the controller maintain f
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11 page tables for temporary relations or complex control tables for processor

reassignment. Also, the algorithm can he Implemented efficiently on a ring

architecture, where the processors are connected by a bus that allows sImul-

taneous transfers from a processor to Its right neighbor.

13.3 Block Sorting Algorithms

For all the algorithms to be presented below, we will not assume the

Ipresence of a multiported disk cache as was done in some previous algorithms.
The presence of such a disk cache makes the architecture not easily extensible.

IThis is because the use of additional processors will require the disk cache
to have additional ports, Hence, the disk cache is not assumed to be part of

Ithe architecture. Instead, all the sorting methods to be suggested will use

p parallel processors, where each processor has attached to it enough secondary

*memory to accommodate M pages of the file to be sorted. The algorithms will

also need additional workspace as will be discussed below. Altogether, Mp=n

pages can be sorted. Since the architecture does not have a shared disk cache

memory, processors will have to exchange records by sending messages via some

interconnection network.
rThe basic idea behind all the algorithms to be presented in this section

is as follows. Consider a sorting algorithm which uses only comparison-exchange

steps. A comparison-exchange step requires the comparison of the sort values of

two records and an exchange in the positions of these two records if they are

found to be out of order. A local comparison-exchange step is a comparison-

exchange step performed on two records in the primary memory of a single pro-

cessor. A non-local comparison-exchange step is a comparison-exchange step

performed on a record in a processor's primary memory and a record in another

processor's primary memory. A block sorting algorithm is obtained by replacing

I every comparison-exchange step in a non-adaptive sorting algorithm consisting

only of comparison-exchange steps with a merge-split step.

A merge-split step of order M merges two sorted runs M pages long and

produces a sorted run 2M pages long which is then split into two parts. A

local merge-split of order M is a merge-split of order M in which the two ori-

ginal and the two final sorted runs are both stored in the secondary memory

associated with a single processor. A non-local merge-split of order M is a

I merge-split of order M in which the two original and the two final sorted runs

are stored in the secondary memories associated with two different processors.

A local merge-split of order 4 is shown in Figure lla and a non-local merge-

I
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Figure lla. A Local Merge-Split of Order 4

i

2IIIE-O ®4=1L1
Before After

Figure lb. A non-Local Merge-Split of Order 4
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split of order 4 is shown in Figure llb.

A block sorting algorithm is obtained by replacing every local (ivon-local)

comparison-exchange step in a sorting algorithm consisting only of comporison-

exchange steps with a local (non-local) merge-splIt step.

We will assume that a local merg,-spllt step of order M is performed in

the obvious way taking 2MC1 time units. However, there are two different tech-
p

niques for performing a non-local merge-split and this leads to the two dif-

ferent classes of block sorting algorithms to be discussed below. If an algo-

rithm consists only of local comparison-exchange steps there is only one cor-

responding block sort algorithm. An example of such an algorithm is the bitonic

sorter of Batcher. However, if a sorting algorithm contains non-local compari-

son-exchange steps, there are two corresponding block sort algorithms because

there are two different techniques for executing the non-local merge-split

steps corresponding to the non-local comparison-exchange steps in the algorithm.

An example of such an algorithm is the odd-even transposition sort.

In the first section below, we will present the block bitonic sort which

consists only of local merge-split steps. Then, in the next sections, we will

present block sorting algorithms which contain non-local merge-split steps.

First, we will present a family of block sorting algorithms in which each non-

local merge-split is performed by merge sorting [Baud78]. Finally, we will

present a family of block sorting algorithms in whcih each non-local merge-

split is performed as a series of local comparison-exchanges [Hsiao8O].

3.3.1 Block Bitonic Sort

In Section 2.2, we presented Batcher's bitonic sorter which could sort

2p numbers with p processors in log 2 2p shuffle steps and l/2(log2p+l)(log2p)

local comparison-exchange steps. By replacing each local comparison-exchange

step with a local merge-split step, we obtain the block bitonic sorter which

can sort Mp pages of records with p processors in log 2p shuffle steps and

j l/2(log2p+l)(log2p) local merge-split steps.

Because the block bitonic algorithm can process at most 2p blocks (runs)

with p processors, a prepocessing stage is necessary when the number of pagesI to be sorted exceeds 2p. The function of this preprocessing stage is to pro-

duce 2p sorted blocks of size n/2p pages each. We have identified two ways

of performing this preprocessing stage. The first is to use a parallel binary

merge to create 2p sorted blocks (runs) of n/2p pages each. The second is to
2execute a bitonic sort in several phases with blocks of size 1, 2p, (2p)2,...phssI p

I
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until blocks of size n/2p pages are produced. We have analyzed both approaches

and have discovered that the first approach is approximately twice as fast as

the second for large n and relatively small p. Therefore, we present below

only an analysis of the first.

The first part of the algorithm is identical to the suboptimal phase of

the parallel binary merge and completes in P log (21)C time. The log 22p
2 n p p p

shuffle steps take log 2p( )Cs time, since each shuffle step requires each

processor to transfer (-) pages of records to another processor. Each local
Pn s n 1lmerge-split is of order and hence takes C1 time units. The total time ofzp~ PP

execution is therefore

n n 1 n 2 (n) 1  ( 2 1
(n)log( D)C + (-)log 2pCs + (n!_)(log2p)(log2p + l)C l

p 2pgpgp

or

n (logn + 1/2(log 22p - log2p))C 1 + p log 2 2pCs
p p p

3.3.2 Merge-Sort Based Block Sorting

In these algorithms, a non-local merge-split of order M is performed as

below. Consider the situation of Figure 12a, in which processor 0 has four

sorted pages and processor I has four sorted pages. It will be seen that the

non-local merge-split of order M will require 4M pages of secondary memory to

be associated with each processor. In the example of Figure 12, M is four.

Thus, each processor must have 16 pages of secondary memory associated with

it. Only the contents of those pages of memory relevant to the discussion

are shown in Figure 12 and the other pages are shown as being empty. The

merge-split proceeds as follows. Processor 1 sends its four sorted pages to

processor 0 which places these four pages in its memory. The situation of

this point is shown in Figure 12b. Processor 0 will then merge sort these two

sorted runs of four pages to produce a sorted run of eight pages as shown in
Figure 12c. Finally, processor 0 will output the higher four pages of the

sorted run back to processor 1 completing the non-local merge-split of order

4 as shown in Figure 12d. Clearly, the time for a non-local merge-split by
1this method is 2MCs + 2MC
P

3.3.2.1 Merge-sort Based Block Odd-even Sort

This method is a generalization of the odd-even transposition sort

[Knut73] which is illustrated in Figure 13. The p horizontal lines represent
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Figure 13. The ODD-EVEN Transposition Sort
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the p processors, each of which contains one of the total of p elements to be

1 sorted. Sorting proceeds in p steps. In the odd-numbered steps, parallel non-

local comparison-exchanges occur between processors 0 and 1, 2 and 3,..., etc.

I' In the even-numbered steps, parallel non-local comparison-exchanges occur be-

tween processors 1 and 2, 3 and 4, ..., etc. The generalization of this algo-

rithm to a block odd-even sort would entail p parallel non-local merge-split

steps. Furthermore, it requires a preprocessing stage to produce p sorted

runs of size n/p each and this takes(n/p)log(n/p)C 1 time units. Thus, the
p

total time of execution is

(n)log(Tn)C 1 + p(2MC + 2MCI ) = (n logn - n logp + 2n)C 1 + 2nC
I p p s p p p p s

3.3.2.2 Interconnection of Processors

It is easy to see that, in this algorithm, each Processor i, for

1 itp-2, interacts directly only with Processors i+l and i-l. Processor

j 0 only interacts with Processor 1, and Processor p-l interacts only with Pro-

cessor p-2. Therefore, for each processor, we need only connect directly to

a maximum of two other processors, the one 'in front of' it, and the one

'behind' it. Figure 14 shows the nature of interconnections for various num-

bers of processors including an additional controller processor. We note, at

this point, that there is no restriction on the number of processors, i.e.,

the value of p. P can b,2 any positive number. Also, since each processor

needs to be connected directly only to two others, we have a hardware structure

which is easily extensible.

3.3.3 Comparison-Exchange Based Block Sorting

I The main problem with merge-sort based block sorting is that it needs 4Mp

pages of secondary memory in order to sort Mp pages of records using p proces-

Isors. This large amount of secondary memory is necessitated by the method used

for noao-local merge-splitting. The authors [Hsia8O] have discovered a new

technique for merge-splitting which may be used to create block sorting algo-

rithms which can sort Mp pages of records using p processors w4 th only 2Mp

pages of secondary memory. Furthermore, these block sorting algorithms have

better time of execution than the block sorting algorithms described in the

previous section.

Tn these algorithms, a non-local merge-split of order M is performed as

follows. First, find the largest record (i.e., the record with the largest-I
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sort value for the sort attribute of those records in the same memory) in Pro-

cessor O's memory and also find the smallest record (i.e., the record with

smallest sort value for the sort attribute) in Processor I's memory. Tf the

largest record in Processor 0's memory is less than or equal to the smallest

record in Processor l's memory, there is no need to exchange. Otherwise, we

exchange the record in one memory with the record in the other memory. Next,

find the second largest record in Processor O's memory and the second smallest

record in Processor l's memory and compare the sort attributes of the two re-

cords. Once again, if the second largest record in Processor 0's memory is

less than or equal to the second smallest record in Processor I's memory, there

is noneed to exchange. Otherwise, the records are exchanged. The process con-

tinues until no more exchanging is needed. Thus, all M records in Processor

O's memory are smaller in sort values than the sort values of the M records

in Processor I's memory.

The entire process of exchanging records may be done as follows if we

assume that the sorted records in processor 0's memory are in descending order

of the sort values. At the same time, we assume that the sorted records in

processor l's memory are in ascending order of the sort values. Now, Processors

0 and 1 compare and exchange, if necessary, corresponding records, i.e., the

first record of Processor 0 (the record with largest sort value in Processor

0's memory) with the first record of Processor 1 (the record with smallest

sort value in Processor I's memory), the second record of Processor 0 (the

record with the second largest sort value in Processor 0's memory) with the

second record of Processor 1 (the record with the second smallest sort value
in Processor l's memory), and so on. At the end of the exchange process, the

sort values of all the NM records in Processor 0's memory are smaller than any

sort value of the M records in Processor I's memory. Furthermore, the sort

values of the M records In processor 0's memory and the sort values of the M

records in processor I's memory both form bitonic sequences. The aforementioned

steps are illustrated in Figure 15. The idea is based on the discovery by

Alekseyev [18] that in order to select the largest t elements out of 2t ele-

mens x.1x 2 .. x2t >, we may first sort < xi, x 2 t .. 9 x t > and then sort
<I 1 t 2,.xt , and then compare and interchange x I with x 2 t' '2 w ith

x 2 -1-1 twith x t+ V. After records are exchanged between the memories

Ii the manner described above, let each processor do a localized sort of re-

cords in Its own memory on the basis of the sort values (see Figure 15 again).

This localized sorting may be done by merging the bitonic sequence start-
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D 2 3 5 6

Step 1
(record-by-record comparison

and interchange between
memories)

0 1 2 3 3 2 A bitonic sequence

01 - 17 9 8 5 6 Another bitonic sequence

Step 2
(localized sort within
respective memories)

1 2 3 3-- -

5 6 8 9 17

Figure 15. A Non-Local Merge-Split of Order 5 in Two Steps
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ing from the two ends of the sequence taking MC time. The compares and inter-p

changes required for performing the merge-split take a worst case time of

2MCs + MC2 and an average case time of MCs + (M/2)C 2 . Thus, the average caseP P

time for a merge-split of order M is!
MCs 4 MC

1 + MC2

which is better than the time for the merge-split of order M by the method of

the previous section. Furthermore, this method for merge-splitting does not

require 4M memory to be associated with each processor. In fact, only one

additional page is needed per processor for the merge-splitting making a total

of (M+l) pages of memory per processor. However, the preprocessing stage of

the block sorting algorithms to be described requires 2M pages of memory to be

associated with each processor. Thus, the block sorting algorithms to be de-

scribed require a total of 2Mp pages of secondary memory as opposed to the 4Mp

pages required by the algorithms of the previous section.

In the next section, we shall analyze two algorithms [Hsia80] for sorting

which use the above techniques for merge-splitting. The first is a generali-

zation of the odd-even transposition sort. The second is a generalization of

a modification of the bitonic sort.

3.3.3.1 Comparison-Exchange Based Block Odd-even Sort

As discussed in Section 3.3.2.1, the method will require a preprocessing

I stage which takes

(n/p)log(n/p)C 
time units

p

Furthermore, it requires p parallel non-local merge-splits which takes
N(~ C1 +M2

p(MCs + C+ c ) time units
*p "2p

*Therefore, the total time of execution is

1 n 2
(n/p logn - n/p logp + n)C + nCs +Cp 2 p

In Figure 16, we present an example in which p parallel processors sort Mp

records for p=4 and M=5.

3.3.3.2 Comparison-Exchange Based Block Modified Bitonic Sort

The bitonic sorter, as discussed in Section 2.1.2, may be used to sort

n keys with n/2 processors, where each of the n/2 processors '. connected to

four other processors. A modification of this sorter is one which may be

I
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Figure 16. Sorting 20 Records Using the Block Odd-Even Sort



ii 41

0o 3 2 2 1

0 -1 17 9 8 6 5

0 -2 0 2 4 5 5

03 8 9 12 13 19

Comparearad exchange

0 2 1

17j 8 6 5

8 9 12 13 1

I I localized sort

0 3322 1

10 2 4 5 5

217 9 8 6 5

8 3 9 12 13

Figure 16. ContinuedL



42

3 3 2 2 1

0 2 4 5 5

17 9 8 6 5

38 9 12 13 19

Compare and exchange between
I 0 and 1, and 2 and 3
t

0 2 2 2 1

3 3 4 5 5

2 8 9 8 6 5

17 9 12 13 19

localized sort

0 1 2 2 2

1 5 5 4 3 3

5 6 8 8 9

9 12 13 17 19

Figure 16. Continued

I.

- ~ -- -. 7



43

SI

I
'I
1 - - - -

5 5 4 3 3

I25 6 8 8 9

3 9 , 12 13 17 1

Compare and exchange
between 1 and 2

I

D -- 0 1 2 2 2

1 5 5 4 3 3

2 5 6 8 8 9

3 9 12 13 17 19

localized sort

II

L 0 1 2 2 2
1 3 3 4 5 5

6 8 8 9

1

& - 9_ 12 13 17 19

I ~ Fgire 16. Continued



44

used to sort n keys with n processors, where each of the n processors is con-

nected to only two other processors [Hsia8O]. A description of how sorting pro-

ceeds in the modified bitonic sorter for four keys is graphically shown in Figure

17. As can be seen from there, there are four (log 24) stages in the algori-

thm. Each stage consists of a shuffle followed by zero or more parallel non-

local comparison-exchanges. The first stage consists of a shuffle followed

by no non-local comparison-exchanges. The second stage consists of a shuffle

followed by parallel non-local comparison-exchanges between processors 0 and

1 and between processors 2 and 3. The shuffles are indicated by the non-

vertical arrows. The vertical arrows indicate the non-local comparison-

exchanges. Thus, the vertical arrow in stage 2 from processor 3 to processor

2 indicates a non-local comparison-exchange between processors 2 and 3. The

direction of the arrow indicates that, after the non-local comparison-exchange,

processor 3 will receive the smaller-valued record and processor 2 will receive

the larger-valued record. The actions to be performed in the remaining two

stages are similarly indicated in the figure.

We see that whereas the bitonic sorter had only local comparison-exchanges

(see Figure 6), the modified bitonic sorter has only non-local comparison-

exchanges. The advantage of the modified bitonic sorter is that it requires

only two interconnections per processor as opposed to four needed in the

bitonic sorter. The advantage will exist even when we generalize the modified

bitonic sorter in an external sorting algorithm. The disadvantage of the modi-

fied bitonic sorter is that it may store only one key per processor as opposed

to two keys per processor for the bitonic sorter. This disadvantage is over-

come when we generalize the modified bitonic sorter to an external sorting

routine where each processor has enough memory to store several records. This

explains the motivation for modifying the bitonic sorter before generalizing

it.

As before, the generalization consists of replacing all non-local com-

parison-exchanges with non-local merge-splits. Therefore, the generalized

algorithm log p shuffles and l/2(logp)(logp+l) non-local merge-

splits. Furthermore, it requires a preprocessing step requiring

(n/p)log(n/p)CI time units
p

Thus, the total execution time is
o n+ +(log+nn n1 4  n!Lc

nlg ( n )C 1 p + (o))(logp)(logp + 1)(nC+ -C C)
,n o o p) + p p p 2p)

or (0-logn + log p -logp)C 1 + ((Tp)log p+-l + n logp)C

time units.
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with lower valued records
Iin processor i and higher

valued records in processor j

Stage L Stage 2 Stage 3 Stage 4

Figure 17. Four Stage Modified Bitonic
Sort with Four Processors
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3.3.3.3 Interconnection of Processors

From the algorithm, it is easy to see what kind of interconnections are

needed between processors. First, to be able to provide the perfect shuffle,

each processor must be connected directly to its shuffle processor which is

calculated as follows.

Let ibin = binary notation of decimal i,

ibin' = ibin after left circular shift by one bit, and

j = decimal equivalent of ibin'. Then

connect Processor i to Processor j.

For P= 8, we have the following interconnections.

Processor 0 is connected to no other processor

Processor 1 is connected to Processor 2

Processor 2 is connected to Processor 4

Processor 3 is connected to Processor 6

Processor 4 is connected to Processor 1

Processor 5 is connected to Processor 3

Processor 6 is connected to Processor 5

Processor 7 is connected to no other processor.

These connections need only be one-way connections. That is, for example,

Processor 6 needs to be able to send records to Processor 5, but Processor 5

need not be able to send records to Processor 6.

Also, to provide for the merge-split operations, we need that Proces-

sor i, O5 i- (P-i), be connected to Processor (i+l) if i is even, or to

Processor (i -1) if i is odd. These connections, unlike the previous ones,

are two-way connections. The algorithm needed to decide on all intercon-

nections (so as to be able to provide for both Shuffles and Merge-Splits)

is shown below.

i = 0
while i< P
do ibin = i in binary

ibin' = ibin after left circularly shifting by one bit
j = decimal equivalent of ibin'
connect Processor i to Processor j

(if j is different from i)
by using a one-way connection

if i is even
then connect Processor i to Processor (i+l)

using a two-way connection
else connect Processor i to Processor (i - 1)

using a two-way connection
i +

end

" - ,2 " .. . , " .... : " - ... . -- ..... ,. :.u - 1.
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The layout of processors and their interconnect ions for various values of p

are shown in Figure 18.

4. SUMMARY AND FUTURE RESEARCH DIRECTIONS

In this paver we have presented both a description of the operation of

a variety of internal and external parallel sorting algorithms and an analy-

sis of the performance of each algorithm. While the internal sorting algori-

thms have only limited application to the problems of sorting in a database

environment this line of research has resulted in the development of a nun-

ber of important theoretical results especially Preparata's shared-memory
multiprocessor enumeration sort which achieves the optimal level of perfor-

mance: log n for n processors.

An important issue which needs further investigation is whether the per-

formance criteria by which parallel sorting algorithms have been previously

evaluated are general enough. Clearly, assuming that the number of proces-

sors is as large as the number of elements to be sorted and counting the num-

her of parallel comparisons as the main cost factor is not satisfactory.

Communication costs and, in the case of external sorting, I/O costs must he

incorporated in a comprehensive analytical model which is general enough to
accommodate a wide range of multiprocessor architectures.

One important aspect of a parallel algorithm is the amount of control it

requires to be executed correctly and efficiently. In particular, an adequate

granularity of synchronization must be determined for an algorithm to perform

its task correctly but without making processors wait for significant amounts

of time. On an SIMI) machine, algorithms that are very synchronous by nature

can be implemented In a straightforward manner. (An example of such an al~o-

rithm is the odd-even transposition sort described in Section 2.3). Imple-

menting the sam~e algorithms on an MIM) machine requires significantly more

overhead for controlling the processors. However, synchronous algorithms can* I be generalized so that the period of time required for synchronous tasks be-

comes longer. For example, replacing a comparison-exchange of two elements

by a merge-split of two blocks of data reduces significantly the level of

synchronization required by a sorting algorithm.

Unfortunately, the MIND approach implies more overhead for control of

the algorithms. One or several processors-mnust coordinate the actions of the

other processors which are executing a task. To accomplish this task, complex1 tables must he gtored and maintained in the controller's memory, and control
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messages must be exchanged between the controller and the processors. We have

identified four components of control cost that should be added to parallel

algorithm cost evaluation:

(1) The overhead for reassignment of processors between phases ofI the algorithm execution.

(2) The synchronization of processors at initiation and termination

of the algorithm, of a phase (e.g., the optimal phase in the

parallel binary merge), and of a step within a phase.

(3) The allocation of pages to processors.

I(4) The storage and maintenance of temporary files created during

the algorithm execution (for example, a merge sort will re-I quire creating a temporary relation to store the output runs

of each phase).

Each of these components require communication overhead (for the exchange

of messages between the controller and the processors) and processing overhead

(for the controller to look-up and update its tables). Techniques for eval-

uating both types of overhead need to be developed.
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